If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5=299
We move all terms to the left:
3x^2+5-(299)=0
We add all the numbers together, and all the variables
3x^2-294=0
a = 3; b = 0; c = -294;
Δ = b2-4ac
Δ = 02-4·3·(-294)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{2}}{2*3}=\frac{0-42\sqrt{2}}{6} =-\frac{42\sqrt{2}}{6} =-7\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{2}}{2*3}=\frac{0+42\sqrt{2}}{6} =\frac{42\sqrt{2}}{6} =7\sqrt{2} $
| 7x-(-125)=342 | | -11/3w=1.5 | | 10x-7=5x9 | | -6-2y=-y | | 13x+7=10x+7 | | 7f-2=25+4 | | 14=t=-17 | | 7.2.5(2p+5)=5p+12.5 | | 14.2=-9n+22-n | | 10/5=12/x | | -10t+6t=-4t | | 4(x+1)=2(x+3)+x | | 1.5=11/3w | | 5x-4+3=58 | | -2-2n=-2n-2 | | -2-6(3+2x)=10(x-2) | | 200=5x+2.5 | | 4|2x-3|=20 | | -2n+3n=-2(1-2n)-(6n+1) | | x+4=-12 | | 1a+2a+3a+4a+5a=26 | | 5x-15=15x-30 | | 17y-2(8y-3)=0 | | 1=3x-9+17 | | 3x+2=5(2x-8) | | 2y+-27=-11 | | 3n=-7+3n | | 13+x-3x=13-2x | | X+10-3x=6x-14 | | (x-9)+2=6 | | (-12)c=12 | | 3(x+1)=5(x+2)-x |